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Abstract—Compared to a single-robot workstation, a multi-
robot system offers several advantages: 1) it expands the system’s
workspace, 2) improves task efficiency, and more importantly,
3) enables robots to achieve significantly more complex and
dexterous tasks, such as cooperative assembly. However, coor-
dinating the tasks and motions of multiple robots is challenging
due to issues, e.g., system uncertainty, task efficiency, algorithm
scalability, and safety concerns. To address these challenges, this
paper studies multi-robot coordination and proposes APEX-MR,
an asynchronous planning and execution framework designed
to safely and efficiently coordinate multiple robots to achieve
cooperative assembly, e.g., LEGO assembly. In particular, APEX-
MR provides a systematic approach to post-process multi-robot
tasks and motion plans to enable robust asynchronous execution
under uncertainty. Experimental results demonstrate that APEX-
MR can significantly speed up the execution time of many long-
horizon LEGO assembly tasks by 48% compared to sequential
planning and 36% compared to synchronous planning on aver-
age. To further demonstrate the performance, we deploy APEX-
MR to a dual-arm system to perform physical LEGO assembly.
To our knowledge, this is the first robotic system capable of
performing customized LEGO assembly using commercial LEGO
bricks. The experiment results demonstrate that the dual-arm
system, with APEX-MR, can safely coordinate robot motions,
efficiently collaborate, and construct complex LEGO structures.

I. INTRODUCTION

Multi-robot manipulation is critical in robotic applications,
such as industrial assembly [37, 3], material handling [50], and
object arrangement [12, 14], etc. Compared to a single-robot
setup, a multi-robot arm system can easily expand the system’s
overall reachable area. Besides, with a team of robot arms,
a task can be accomplished more efficiently [49] by having
each robot execute individual tasks parallelly. In addition to
improving task efficiency, multi-robot can achieve significantly
greater dexterity and is necessary in many applications that
require collaborations, e.g., cooperative assembly, since certain
tasks cannot be done with only one arm.

LEGO assembly is an example of cooperative assembly. In a
LEGO structure, bricks are assembled by forcing the top knobs
of a brick into the bottom cavities of another brick. The bricks
are held together passively, i.e., by the friction in the knob-to-
cavity connections. Thus, the connections are not rigid, and
subsequent manipulation, if performed inappropriately, can
easily break the existing structure. Due to the nature of the
passive connection, a multi-robot system is necessary for such
cooperative assembly. Fig. 1 demonstrates example assembly
operations in constructing a LEGO structure. Fig. 1(a) shows
the robot picking up a brick by disassembling it from the
LEGO plate (i.e., pick). Fig. 1(b) illustrates the robot as-

Fig. 1: Illustrations of bimanual cooperative assembly. Manip-
ulation skills denote contact-rich operations for assembly.

sembling a brick by placing it at the desired location and
forcing a solid connection (i.e., place-down). One robot is
sufficient for these two tasks since the manipulated object
is fully supported and the operation would not collapse the
existing structure. On the other hand, Fig. 1(c)-(e) showcase
operations that require multi-arm collaboration. In Fig. 1(c),
the upper robot is assembling a LEGO brick on top of the
character ‘S’. To establish a solid connection, the robot needs
to press down and force the knob insertion due to the passive
connection nature. However, since the existing connections are
non-rigid, the place-down operation would break the existing
overhanging structure. Therefore, the lower robot is necessary
to support and stabilize the structure from below (i.e., support-
bottom). Similarly in Fig. 1(e), the lower robot assembles
a brick from the bottom onto the character ‘S’ by pushing
it up and forcing the connection (i.e., place-up). The place-
up operation would break the existing structure, and thus,
the upper robot is required to press down (i.e., support-top)



in order to stabilize the structure. In addition to cooperative
assembling, the multi-robot collaboration also enables more
dexterous object manipulation, e.g., reorienting bricks in hand.
As shown in Fig. 1(d), the upper robot grabs a brick from
its top initially. To have the robot grab the brick from its
bottom, we can have the upper robot handover the brick to
the lower robot. With the capability of reorienting in-hand
objects, the robot can subsequently accomplish the assembly
from the bottom as illustrated in Fig. 1(e). Despite being a toy
brand, LEGO has been widely used in entertainment, educa-
tion, prototyping, etc. It is ideal for assembly benchmarking
since it is a low-cost, standardized, and highly customizable
assembly platform. Meanwhile, constructing LEGO structures
is a challenging contact-rich manipulation problem due to the
high-precision requirement and non-rigid connections. Thus,
we use LEGO as our cooperative assembly benchmarking
platform and the remaining discussion is in the context of
LEGO assembly.

Coordinating the tasks and motions of multiple robots to
accomplish cooperative assembly is challenging for several
reasons. First, a system with more than a single robot in-
troduces overhead and algorithmic challenges in their coor-
dination. As shown in Fig. 1 certain operations involve con-
tacts with objects (i.e., pick, place-down, place-up, handover,
support-bottom, and support-top) while some do not (i.e.,
transit and wait). There exist delays in controlling the robot
and receiving sensor feedback, or even contingencies due to
unexpected events when performing contact-rich operations,
which would cause delays or stops to one or more robots.
The uncertainty makes it challenging to safely coordinate the
robots throughout the assembly process. Second, due to the
collaboration need, robots often need to operate closely to
each other as illustrated in Fig. 1(c)-(e). Even when executing
under uncertainty in a confined shared workspace, robots must
always avoid collisions. Third, it is desired that the task can
be accomplished more efficiently by a multi-robot system.
Thus, robots must have a comprehensive understanding of
the cooperative assembly task and plan optimized motions to
reduce the completion time, instead of frequently stopping to
avoid collisions. Lastly, the multi-robot system should scale as
the complexity of assembly design increases. It is necessary
that the algorithm can scale to larger and more complex tasks.

Many recent works have proposed methods for planning
multiple robot arms for assembly [22, 5], rearrangement
[12, 13], or general manipulation tasks [45]. However, these
planners often assume a sequential execution order and syn-
chronously moving robots, where all robots start a task at
the same time and wait for other robots to finish. We take
a different lens and propose APEX-MR, an asynchronous
planning and execution framework, to robustly, efficiently,
and safely coordinate multiple robots. Given an assembly
task sequence, APEX-MR leverages integer-linear program-
ming (ILP) to distribute the tasks to the robots and gen-
erate a sequential robot plan. Most importantly, APEX-MR
extends the temporal plan graph (TPG) [20] to multi-robot-
arm systems and post-processes the sequential robot plan for

asynchronous execution. Specifically, the TPG captures all
dependencies between different robots’ tasks and motions and
generates a partial-order graph, which can significantly reduce
unnecessary wait time and is robust to execution delay and
uncertainty. To highlight the applicability of our proposed al-
gorithm within a full multi-robot assembly pipeline, we deploy
the proposed APEX-MR to a dual-industrial-arm system to
construct complex customized LEGO structures up to 258
objects in simulation and up to 47 objects in the real world.
In summary, our contributions are as follows:

• We extend the TPG execution framework to multiple
robot arms and show that it enables robust and safe multi-
robot asynchronous execution under uncertainty.

• We propose a sequential multi-robot task and motion
framework that is complementary to the TPG execution.

• We demonstrate algorithm deployment and system inte-
gration for bimanual LEGO assembly. To our knowledge,
this is the first robotic system that can accomplish flexible
(i.e., customized complex designs instead of simple pick
and stack) assembly using commercial LEGO bricks.

The rest of this paper is organized as follows: Sec. II discusses
relevant works. Sec. III deliberates the input that APEX-MR
consumes and assumptions we have. Sec. IV introduces our
proposed APEX-MR, an asynchronous planning and execution
framework for multi-robot cooperative assembly. Sec. V shows
the experiment results and demonstrates the deployment to
a bimanual system for LEGO assembly. Sec. VI discusses
limitations and future works. Sec. VII concludes the paper.

II. RELATED WORKS

Multi-Robot Arm Motion Planning Motivated by the rise
of bimanual manipulation systems, many early works in the
field study the problem of dual arm motion planning [51].
One naive approach that scales single-robot motion planning
methods to two or more robots is to plan in the composite
joint space, with methods such as RRT-Connect [25], BIT*
[11], or graph of convex sets [35]. However, due to the curse
of dimensionality, these methods struggle to find high-quality
solutions as the number of robots increases. Other common
strategies include building a composite roadmap from the
Cartesian product of individual roadmaps [15], coordinating
the speed of individually planned motions [2], or using pri-
oritized planning [8]. More recently, more specialized multi-
robot motion planners have been proposed that are based on
roadmaps (dRRT [53], dRRT* [48], and CBS-MP [52]) or
utilizing multi-agent path finding techniques [44, 45]. Some
approaches also use online planning or control techniques to
generate motions in real-time. Zhang and Pecora [61] proposes
an online motion coordination technique, in which they plan all
robot’s paths offline and a pairwise collision matrix between
robots. Then, the speed of each robot can be efficiently
planned online to avoid collisions, even in the presence of
execution delays. However, their method cannot always find
a feasible motion and relies on a task reallocation process to
avoid deadlock. Other techniques such as a distributed model
predictive controller [10] or a dynamical system approach [38]



can also be used to generate multi-robot arm motions in real-
time, but are not tailored towards long-horizon planning tasks.

Multi-Robot Task and Motion Planning Beyond motion
planning, multi-robot arm task and motion planning (MR-
TAMP) have been studied since the 1990s, e.g., object pick
and place [24], and many of which are designed for a dual arm
setting [17, 12, 14, 51]. Similar to our method, these methods
take a two-staged approach in which they first generate a
task plan with robot assignment and grasp poses, then search
for corresponding motion plans with composite-state-space or
prioritized planning. The authors of dRRT* have proposed ex-
tending dRRT* to multi-modal roadmaps with given possible
pick-up and hand-off configurations and searching for a task
and motion plan directly [47, 46]. Given that motion planning
calls tend to be more costly, another approach is to generate
promising task plans first in a lazy manner and subsequently
find corresponding motion plans and backtrack when required.
This approach can be implemented with a greedy method [18],
with a mixed-integer linear program [49, 5, 31] or through a
satisfiability modulo theories solver [42]. However, a major
drawback is that task planning often assumes motions to
be synchronous, which can be suboptimal in practice. Our
TPG framework is designed to be complementary to these
synchronous tasks and motion planners, as it can relax the
synchronicity assumption with post-processing and shorten the
makespan of the overall plan. Another significant concern
is that many MR-TAMP methods are designed for simple
environments such as object pick and place and planned robot
trajectories are executed in open-loop or only in simulation.
Our framework scales to more complex environments and
is designed to integrate with more challenging manipulation
skills such as a force-feedbacked controller.

Multi-Robot Arm Motion Execution Most existing work
executes their multi-robot on real robots in a synchronized
way. Since the popular motion planning framework MoveIt!
[7] does not natively support moving multiple robot arms
asynchronously, some recent work have sought to address
this and enable asynchronous execution. Meehan et al. [36]
adds a trajectory reservation component and treats the entire
trajectory of a moving robot arm as a static obstacle when
planning another arm’s motion, which can be too conservative
and cause deadlock. Stoop et al. [55] uses a central scheduler
to check if a new trajectory collides with previously scheduled
trajectories and executes it asynchronously if there is no col-
lision. Otherwise, the new trajectory waits for the conflicting
previous trajectory to finish before it can start. However, their
methods do not account for execution delays, may wait longer
than necessary, and directly modify the MoveIt! software stack.
In contrast, our TPG formulation is robust to arbitrary delays
by design, minimizes robot wait time, and can be implemented
without modification to Moveit!.

Multi-Agent Path Finding and Execution Multi-agent
path finding (MAPF) [54] studies how to coordinate a large
team of mobile robots in a discretized world environment,
often on 2d grid worlds representing warehouse settings [32]
or pre-defined roadmaps [21]. State-of-the-art MAPF algo-

rithms can plan near-optimal collision-free paths for hundreds
of robots in seconds [26].

However, these MAPF algorithms achieve such impressive
efficiency at the cost of neglecting robot kinematics and
execution uncertainty. As a result, there is growing research
within the MAPF community focused on the efficient and
robust execution of (imperfect) MAPF plans on real robots.
One of the most widely adopted frameworks is the tem-
poral plan graph (TPG) [20], originally proposed to post-
process MAPF plans to meet robot kinematics by enforcing
passing orders at locations visited by multiple robots. TPG
has since been extended to execution frameworks for MAPF
under uncertainty [33] and mobile robot coordination in ware-
houses [19, 59]. Recent advancements introduce bidirectional
TPG [56] and switchable TPG [1, 23], which further enhance
TPG by allowing flexible passing orders at certain locations.

Given the success of TPG in coordinating mobile robots, we
aim to explore its applicability in coordinating robotic arms.
A key distinction of traditional TPG versus our use case is
that the robot kinematic is more complex, and may change
over time as the robot arm picks up different object, which is
a key focus in this paper.

Robotic LEGO Assembly Automating LEGO assembly
using robots is challenging due to the high-precision require-
ment, tiny sizes of LEGO bricks, and non-rigid connections in
the structure. Most of the existing works address the LEGO
assembly problem in simulation [43, 39], which cannot be
generalized to physical assembly due to the lack of simulators
to simulate the connections between LEGO bricks. Recent
works [9, 16, 27, 30] assume the structure is fully supported
and only consider placing bricks on top of others, which
are limited to assembling simple structures. [34] considers
assembly using customized brick toys, which does not apply
to LEGO assembly. In this paper, we apply APEX-MR to
a bimanual system to construct complex customized LEGO
structures beyond simple stacking.

III. PRELIMINARIES

To coordinate a multi-robot system to perform cooperative
assembly tasks, we assume three inputs are provided.

Environment Setup We assume the environment setup,
including (a) geometries of all robots, (b) poses of objects
to be manipulated B = [b1, b2, . . . , bNb

], and (c) states of all
obstacles, is known as shown in the input section in Fig. 2. We
assume the system consists of N robots, and Nb is the number
of objects that can be used for the assembly. An object bi is
semi-static, meaning it can be grasped, attached, and moved
by the robots. Note that since duplicate objects are common
in assemblies, bi and bj can be identical objects, e.g., identical
2× 2 bricks in the character ‘S’ shown in Fig. 2.

Assembly Plan Given an assembly design with Na objects,
we assume the assembly plan A = [a1, a2, . . . , aNa ] is
provided as shown in the input section in Fig. 2. Each step aj
refers to an object, such as a 1× 2 brick. The assembly plan
specifies the order in which each object should be assembled.
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Fig. 2: An overview of APEX-MR. On a high level, APEX-MR builds a sequential task plan given an assembly sequence,
plans the motion of each task with RRT-Connect, and converts the solution to a parallel, asynchronous plan for execution with
a TPG. Specifically, (a) shows the example of a task graph, (b) illustrates generating robot motion from the task plan, and (c)
shows the example of a multi-modal TPG.

Note that due to duplicate objects in B, there are multiple can-
didates bi, . . . , bk that can be used to accomplish an assembly
step aj in A. Furthermore, we require the assembly plan A
to be physically valid [58, 28], ensuring that each task can
be performed in reality. Specifically, the partially assembled
structure after each step aj must be physically stable, and
there exists at least one feasible grasp pose for each step. The
assembly sequence also specifies whether each step aj requires
two robots for cooperative assembly and the specific type of
cooperation needed (i.e., support or reorientation). Lastly, we
assume B is sufficient so that each object required for aj can
be found in the environment, i.e., A ⊆ B.

Manipulation Skills We assume that the robot manipulation
skills are predefined and known. We denote the skill set as
S = [s1, s2, . . . , sNs

], where Ns is the number of skills an
individual robot has. For instance, a skill can be, inserting
a pin, fastening a screw, picking up an object, etc. In our
case of LEGO assembly, each skill si is a composite of
multiple motions parametrized by the pose of the manipulated
object, the robot end-effector, and parameters learned from
demonstrations. We assume an algorithm, such as interpolation
or RRT-Connect, can generate a reference robot trajectory for
the purpose of computing a collision-free coordination sched-
ule. During execution, each skill is executed with a feedback
controller so that its exact execution time is unpredictable.
Example manipulation skills are shown in Fig. 1, and more
details are discussed in Sec. V.

In addition to these inputs, we assume the existence of a
collision-free HOME pose for each robot that never blocks
other moving robots from executing their tasks. Robots can
also transit between different poses, or wait and hold their
current pose in place.

IV. APEX-MR: ASYNCHRONOUS PLANNING AND
EXECUTION FOR MULTI-ROBOT SYSTEM

In this section, we introduce APEX-MR, a framework
for asynchronously coordinating the task plan, motion, and
execution of a multi-robot system to accomplish cooperative
assembly tasks. Fig. 2 provides an overview of the three
stages of APEX-MR. Given the input discussed in Sec. III,
a sequential task plan and the corresponding task graph,
as shown in Fig. 2 (a), are generated from the assembly
using ILP. The motion plan for each task is then generated
sequentially with a single-robot motion planner (see Fig. 2
(b)). The last and most crucial step, Fig. 2 (c), converts the
sequential plan to a multi-modal TPG that can be executed
safely, asynchronously, and efficiently in real.

We will present these algorithmic components in order in
the following discussion. For notations, we use i ∈ [1, N ] to
index over robots, j ∈ [1, Na] to index over assembly steps in
A, m to index over tasks for each robot, and k ∈ [1, Nb] to
index over usable objects in B.

A. Task Planning

Given the assembly sequence A, task planning aims to
construct a sequential task plan that includes robot assignment,
robot target pose assignment, and object assignment. Specif-
ically, for each step aj in the assembly sequence, the task
planner must assign one responsible robot, a support robot if
required, and an object bk of the correct type. In addition, the
task planner must select the feasible grasp pose, or a composite
motion of multiple poses, to perform necessary manipulation
skills for each aj . Fig. 3 provides an overview of all the
decisions made. These decisions directly affect the feasibility
of motion planning, as task planning determines whether there
are collision-free and deadlock-free paths.



Task Definition We define a task T i as a piece of work
that requires robot i to either transit to a goal pose or to
perform some manipulation skill s to achieve a goal constraint.
For example, a task may involve a robot arm picking up
an object, supporting a structure, receiving an object handed
from another robot, retracting to its HOME pose, etc. In the
context of LEGO assembly, each assembly task aj is broken
down into a sequence of tasks. As shown in Fig. 1 (a) and
(b), a robot must first transit to the initial location of an
object, pick the object, transit the object to the location for
assembly, place down the object on the target structure, and
finally transit back to the robot’s HOME. For an assembly step
that requires collaborative assembly, the support robot is also
assigned a sequence of tasks, such as transiting to the structure
and supporting it in Fig. 1 (c) and (e). If a reorientation is
required as illustrated in Fig. 1 (d), the support robot will be
assigned a transit and a pick task to collect the object, and
a handover task to the other robot so that the object can be
placed up to the structure.

Task Graph A task graph G = (V, E) is a direct acyclic
graph that represents the ordered set of tasks for all robots
to complete the final assembly. The task graph also implicitly
represents the movement of manipulated objects, the evolving
environment and collision scene, as well as the kinematic
switches of the robots. A node is either a task node or an object
node. A task node represents a task T i

m ∈ V for robot i, where
m is the index. Each task node also contains a robot target
pose for this task. An object node represents an object bk and
its poses. An edge from one task node to another in the graph,
T i
m → T i′

m′ , represents a precedence constraint, that states a
dependency where T i

m must be executed before T i′

m′ can start.
An edge from an object node to a task node, bk → T i

m, means
that the object bk is kinematically attached to the robot i at the
beginning of this task. In contrast, an edge from a task node
to an object node, T i

m → bk, represents that an object would
be detached from robot i after this task ends. Each robot i has
M i tasks. A task graph itself does not limit if the tasks must
be executed sequentially, synchronously, or asynchronously.

Approach The main idea of our approach is to find a turn-
based, sequential task plan according to the assembly sequence
A, which is itself sequential. Only one robot is actively moving
or executing skills at any time, while the other robot waits.
Each robot returns to its HOME pose at the end of completing
an assembly step.

Algorithmically, an ILP jointly optimizes robot assignment,
object assignment, and target robot poses. A set of binary
decision variables assigns a robot i to an assembly step aj
using the object bk and a feasible grasp pose. Another set
of binary decision variables denotes whether the assignment
of support robot and support poses. We precompute feasible
robot poses for grasping all available objects at initial and
assembled positions, and support poses if necessary. The cost
for assigning a robot i, an object bk, and a corresponding
grasp pose to an assembly step aj is estimated by the sum
of transit distances necessary for this assembly step. The ILP
finds the best set of assignments that minimizes the sum of
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Fig. 3: An overview of the task planning in APEX-MR. Given
the assembly sequence A, each step aj is assigned a robot, an
object, a feasible object grasp pose, and a supporting pose if
necessary.

costs to complete the assembly and an auxiliary term for load
balancing while ensuring the object type and support robot
requirements are met. More details of the ILP formulation are
discussed in appendix A.

Combined with the precomputed robot poses, the optimized
assignment gives a complete set of robot, object, and grasp
pose assignment in each step. We then construct a correspond-
ing sequential task plan and task graph (e.g., Fig. 2 (a)) with
all inter-robot task dependencies and object relationships. A
sequence of tasks for the assigned robot is added for each
assembly step, and two object nodes are added to the task
graph and connected to the pick task and place task nodes
to indicate their attachment and placement, respectively. If a
collaborative assembly is required, then a sequence of support
tasks is added to the support robot to be completed first.
Inter-robot task dependencies are added to the task graph to
constrain that the support task must precede any place task,
and the following task after support can only start after the
place task finishes. If two consecutive assembly steps aj and
aj+1 are assigned to different robots, a task dependency is
added to ensure the place task for aj+1 must wait for the
place task for aj .

Compared to other MR-TAMP and assembly methods such
as [14, 18, 42, 5], APEX-MR generates a sequential plan
first. This has two advantages: (1) It is easy to reason about
inter-robot collision for scheduling tasks and avoids expensive
feasibility checks needed for parallel task execution; (2) The
complexity of motion planning is significantly reduced since
each task becomes a single-robot planning problem, which
avoids solving a challenging and time-consuming multi-robot
arm motion planning problem. It is worth noting that, while
the sequential plan might seem inefficient for a multi-robot
system, our execution step will post-process this plan to enable
efficient parallel execution.

B. Motion Planning

Once the sequential task plan for each robot is determined,
motion planning becomes straightforward. As illustrated in
Fig. 2 (b), APEX-MR iterates over each task and use a
single-robot RRT-Connect algorithm to plan the trajectory
for this task when other robots are waiting. This is feasible
because all other robots would be at a nonblocking stationary



pose, i.e., HOME. A reference trajectory is also generated for
tasks executed by specific manipulation skills based on the
grasp/support pose.

The motion planner generates a planned trajectory for every
robot and every task. Each trajectory τ im for robot i and task
T i
m is represented with a sequence of uniformly timestamped

poses, {(Ci
n, t

i
n)}, n ∈ [N i

start,m, N i
end,m] with step size ∆t.

N i
start,m and N i

end,m are the first and last index of the
trajectory τ im, N i

start,1 = 1, and N i
start,m+1 = N i

end,m + 1.
For each task, the planner first generates a sequence of
poses Ci

n for the robot i, then determines corresponding
timestep tin for each pose based on the maximum velocity, i.e.,
tim = tin−1+d(Ci

n, C
i
n−1)/vmax. The timing in the trajectory

also ensures that each robot takes turns to complete its task
according to the task sequence. Hence, the initial timestep of
each task is equal to the last timestep of the previous task
in the sequential task plan. Since RRT-Connect may produce
jerky and long trajectory, we use a randomized shortcutting
algorithm to smooth suboptimal trajectories. The output of
motion planning should be a sequence of trajectories for each
task, i.e., τ im, ∀i ∈ N, ∀m ∈ M i.

C. Asynchronous Execution

From the sequential task and motion plan, APEX-MR
converts it to a TPG to improve the quality of the plan and
support asynchronous execution. Importantly, the process to
construct a TPG is not limited to a sequential plan and also
applies to synchronous plans commonly seen in MR-TAMP
works such as [42, 46, 49].

TPG Definition APEX-MR uses a multi-modal temporal
plan graph (TPG) to represent an execution schedule for the
team of robot manipulators. As illustrated in Fig. 2 (c), multi-
modal TPG is a directed acyclic graph G = (V,E) with two
types of node. A pose node vin corresponds to a configuration
Ci

n on the trajectory of a transit task for robot i. A skill
node ṽin represents a manipulation skill (e.g., pick, handover,
support, etc) that will be executed by some robot controller
or policy. The skill node also contains a reference trajectory
generated in motion planning. A type-1 edge (vin → vin+1)
connects two nodes from the same robot i and indicates
the order between two nodes. A type-2 edge (vin → vi

′

n′)
represents an inter-robot precedence order that constrains the
robot i′ to wait for robot i to reach the pose at Ci

n or finish
the skill at vin before moving to vi

′

n′ . A type-2 edge can be
added for both task dependencies and motion dependencies.
In contrast to the TPG defined in [20], a multi-modal TPG
combines a TPG with a task graph and assigns a corresponding
task T i

m to each node vin. Since there are kinematic switches
and changes to the collision environment, each node also
contains the robot kinematic (i.e., attached object), which will
be important for the TPG construction process.

Building a multi-modal TPG The process of constructing
a TPG from a multi-robot motion plan can be interpreted as
converting from the sequential robot trajectories to temporally
dependent robot schedules. On a high level, inter-robot task
dependencies are copied as type-2 edges for TPG, and type-2

Algorithm 1 Multi-Modal TPG Construction

1: ▷ Input: A task graph G and all robot trajectories τ im ◁
2: for robot i = 1, . . . , N do
3: for task T i

m = T i
1 , . . . , T i

Mi do
4: if task T i

m is executed by a skill then
5: Add a sequence nodes {vin} from τ i

6: Add type-1 edges for consecutive nodes
7: else Add a skill node ṽin
8: Add type-1 edge from vi

Ni
end,m−1

to vi
Ni

start,m

9: for task dependency (T i
m → T i′

m′) ∈ E such that i ̸= i′ do
10: Add type-2 edge from vi

Ni
start,m+1

to vi
′

Ni′
start,m′

11: for robots (i, i′) = {1, · · · , N} ⊗ {1, · · · , N} do
12: if i == i′ then continue
13: ▷ (Optional) parallelize the following ◁
14: for n = 1, . . . , N i

end,Mi do
15: Update robot i kinematic if needed
16: for n′ = 1, . . . , N i′

end,Mi′ do
17: Update robot i′ kinematic if needed
18: if ti

′

n′ ≥ tin or vin depends on vi
′

n′ then
19: continue
20: if vi

′

n′ collides with vin then
21: Add type-2 edge from vi

′

n′+1 to vin
22: Simplify TPG with transitive reduction.

edges for motion dependencies are constructed by scanning
for collisions between all pair of TPG nodes. A key benefit of
this partial-order representation is that TPG does not specify
a fixed time between two consecutive nodes, and thus allows
execution delays. We outline the detailed procedure below.

The construction process begins by creating the nodes and
type-1 edges. For each transit task T i

m, a pose node vin is
constructed for each configuration Ci

n of the trajectory τ im.
A skill node ṽin is created for every manipulation task. The
timestamp in the input trajectory tin for each node vin is also
recorded. Each node vin is then connected to its successor
vin+1 by a type-1 edge, and the end node of a task vi

Ni
end,m

is

connected to the start node of the next task vi
Ni

start,m+1
. When

a robot waits at a node vim, that is Ci
m = Ci

m−1, the node
vim is removed. This is because removing wait action does
not change the robot path or any temporal dependency in the
TPG.

Next, all the type-2 edges are identified the TPG. First, all
inter-robot task dependencies (T i

m → T i′

m′) ∈ E from the task
graph G are added as type-2 edges to the TPG. Specifically,
for every edge in the task graph T i

m → T i′

m′ , a type-2 edge is
added from the beginning of task T i

m+1, i.e., node vi
Ni

start,m+1
,

to the beginning of task T i′

m′ , i.e., node vi
Ni′

start,m′
. This type-2

edge ensures that robot i only starts T i′

m′ after robot i′ finishes
executing task T i

m.
Then, motion-level dependencies are identified by iterating

over all pairs of nodes in the TPG with a double loop iterating
over (i, i′). Robot kinematics can be incrementally changed if
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…

Fig. 4: Illustration of the execution setup. TPG maintains and
controls the execution schedule of all robots on a central
server, gradually sending new trajectory segments that can be
safely executed. Each robot maintains a controller-sensing loop
independently while updating its state with the central server.

node vin is the start of a new task that attaches or detaches
an object. For each node vin, it is checked against all other
nodes vi

′

n′ from a different robot (i ̸= i′) and has an earlier
timestamp ti

′

n′ ≤ tin. Collision checking for pose nodes means
that the robot links and attached objects at the corresponding
poses Ci

n and Ci′

n′ are checked. For skill nodes, all robot
poses on the reference trajectory have to be collision-free
simultaneously. If there is any collision between vi

′

n′ and vin, a
type-2 edge is added from the earlier node’s successor, vi

′

n′+1,
to the later node, vin. This way, if vi

′

n′ is executed before vin in
the input sequential plan, vi

′

n′ must still be executed before vin
can start, avoiding any potential collisions. When iterating n′,
it is unnecessary to check collisions for any node vi

′

n′ that has
a larger timestamp than vin, i.e., ti

′

n′ ≥ tin, because those would
be checked when the iterated robot pair (i, i′) are swapped.
Also, if the current vi

′

n′ is a predecessor of vin in the graph,
vin already waits for vi

′

n′ and avoid collisions, so it becomes
unnecessary to check them again.

The total number of collision checks needed depends on the
number of robots, discretized steps, and type-2 edges added
from the task graph. Once every node has been checked against
potentially colliding nodes, a transition reduction algorithm is
applied, similar to [33] to simplify the TPG. A type-2 edge
vin → vi

′

n′ is redundant if node vin is still a predecessor of node
vi

′

n′ after the edge is removed. We remove all such redundant
edges to reduce the total number of scheduling constraints and
communication overheads during execution.

The primary bottleneck of the TPG construction process
is the number of collision checks, which scales quadratically
with respect to the number of robots and the number of nodes.
To alleviate this, collision checking can be parallelized across
many CPU threads, reducing its runtime. A pseudocode of the
entire construction process is provided in Algo. 1.

Further Optimization An optional step to further reduce
the execution makespan and smooth the trajectory is to skip
the intermediate transition to HOME after every assembly step.
We use the following shortcutting algorithm, similar to the
strategy implemented in [41], to achieve that while maintaining

a collision- and deadlock-free plan.
The anytime algorithm works by randomly sampling two

nodes of the TPG (vin, v
i
n′ ) from the same transit task T i

m,
checking whether connecting them in a shortcut is feasible.
Consecutive transit tasks passing through the robot’s HOME
pose are merged as a single task. This allows the HOME pose
to be skipped. A shortcut path directly interpolates between
Ci

n and Ci
n′ to generate a sequence of poses with the same

step size ∆t. The shortcut must be collision-checked against
any independent nodes (i.e., nodes that are not predecessors
of vim or successors to vim′ in the TPG). On a multi-modal
TPG, the collision checking must include any attached objects
to the robot, as well as any independent object nodes on a
task graph (i.e., object nodes that are not predecessors or
successors of the current task). Once a valid shortcut is found,
the original nodes between vim, vim′ are replaced with new
nodes corresponding to the shortcut. If adding a valid shortcut
from vin to vin′ skips any outgoing edges between these two
nodes, the start node of these outgoing edges is moved to
vin. If any incoming edges are skipped, then the start node of
these incoming edges is moved to vin′ . This ensures that any
dependencies before adding a shortcut still exist after, and the
TPG remains collision-free. Since each shortcut is collision-
free, no new dependencies in the TPG are introduced and
TPG remains deadlock-free. The shortcutting algorithm keeps
identifying valid shortcuts until a user-defined time limit is
reached, removing redundant transitions to HOME poses in
the process.

D. TPG Execution

Executing a motion plan on robot arms often requires a
position controller for movement and other specific controllers
for manipulation skills. These controllers may have delays
or uncertainties that affect the real-robot execution time. The
TPG formulation provides an easy way to execute a multi-
robot plan. Here, we present one centralized mechanism to
coordinate multiple robot arms.

As shown in Fig. 4, the TPG is hosted on a central server
that communicates with each robot’s execution thread. Each
pose node in the TPG corresponds to an action that moves the
robot’s position to the node’s configuration. Each skill node
corresponds to an action that executes the predefined robot
skill. An action can be safely executed if there are no incoming
edges from any nodes that are not executed.

If an action is safe to execute based on the TPG, the
central server sends it to the robot’s action queue. Each
robot maintains its own controller-sensing loop and controls
the robot according to upcoming commands and its state
estimation. The state estimation is also shared with the TPG,
which then updates the TPG when a node is being executed
or completed. Newly completed nodes may also allow new
nodes to be queued if their outgoing edges were previously
preventing unsafe actions. During execution, TPG can be
interpreted as a control law that maintains the safe scheduling
of individual robot actions.



(a) (b) (c)

Fig. 5: Experiment setup for bimanual LEGO assembly. (a)
Simulation environment. (b) Real setup. (c) Illustration of the
EOAT, i.e., LT-V2, for the robot to construct LEGO structures.

V. RESULTS

To evaluate the performance, we apply the proposed APEX-
MR to bimanual LEGO assembly tasks. Given a customized
LEGO design as shown in Fig. 6, APEX-MR coordinates
the robots to construct the desired structure as shown in
Fig. 9 using available LEGO bricks. We deliberate the inputs
(introduced in Sec. III) to APEX-MR below.

Environment Setup Figure. 5(a) and 5(b) illustrate the
simulation environment and the real setup, which includes
two Yaskawa GP4 robots. Following the task convention in
[30], we consider building LEGO structures on a baseplate,
which is calibrated1 and placed in between the two robots,
using commercial standard LEGO bricks initially stored on
the baseplate. Each robot is equipped with an ATI Gamma
force-torque sensor (FTS) and the end-of-arm tool (EOAT) is
mounted on the FTS. The simulation consists of the entire
workspace, which includes the robots, FTS, EOAT, LEGOs,
nearby workstations, etc. The complete digital environment
provides rich and accurate information for APEX-MR to safely
coordinate the robot collaboration.

Assembly Plan Given a LEGO structure, we employ the
physics-aware assembly planning in [28] with customized
LEGO physics reasoning [29] to generate a physically valid
assembly sequence. Specifically, a physically valid assembly
sequence enforces that for each step after assembling a brick,
the structure is stable and does not collapse. Note that the defi-
nition of a physically valid assembly sequence can be different
for other cooperative assembly tasks. For other applications,
the assembly sequence can be obtained via planners, e.g., [58],
and the proposed APEX-MR is also applicable downstream.

Manipulation Skills Manipulating LEGO bricks is a non-
trivial contact-rich manipulation problem beyond simple pick
and stack. A robot EOAT and manipulation policy (i.e., insert-
and-twist) was presented in [30], which enables a robot to
manipulate commercial standard LEGO bricks, i.e., pick, and
place-down in Fig. 1. However, a robot can only use it to
manipulate a LEGO brick from its top, which limits the system
from constructing complex structures. To enhance the system
capability, we present a new LEGO tool (LT-V2), as shown

1We calibrate the transformation from the robots to the baseplate by
teleoperating the robot to touch the plate. Note that we only measure the
translation (X , Y , Z) and yaw angle while assuming no roll and pitch offsets.
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(a) Cliff.

14

(b) Branched stairs.

14

(c) Faucet.

38

(d) Bridge.

29

(e) Fish.

258

(f) Chair.

36

(g) Vessel.

24

(h) Guitar.

47

(i) RSS.

Fig. 6: Customized LEGO designs for evaluating APEX-MR.
The number in each figure indicates the number of objects
required to assemble the LEGO structure.

in Fig. 5(c). In particular, LT-V2 has LEGO studs added to
the side of the tooltip. The new design enables the robot to
manipulate a brick from its bottom as shown in Fig. 1, i.e.,
handover and place-up. With LT-V2, we define the manipu-
lation skills as shown in Fig. 1, including 1) goal reaching
with force feedback (i.e., support-bottom and support-top),
and 2) learned force policy (i.e., pick, place-down, place-up,
handover). For each skill, we generate a maximum of one
feasible (i.e., G = 1) LEGO grasp pose and one support pose
if necessary to use in task planning.

Implementation We implement the TPG algorithm and ma-
nipulation skills in C++ with ROS-Noetic and MoveIt! [7]. The
ILP in task planning is solved with the pulp Python package.
The RRT-Connect motion planning uses MoveIt!’s OMPL [57]
plug-in. Trajectories are discretized using ∆t = 0.05 when the
maximum L1 joint velocity is 1 rad/s. ∆t is adjusted linearly
based on the max velocity to ensure the same density. All
simulation experiments are conducted on an AMD 7840HS
laptop.

Experiment Objective While APEX-MR itself is a full
pipeline for multi-robot tasks and motion planning, the key
innovation that enables asynchronous innovation is the TPG
execution framework. Thus, we are interested in the following
questions when evaluating APEX-MR:

• (Q1) How significant is the benefit of asynchronous
execution, enabled by the TPG execution framework?

• (Q2) How is the quality of plans produced by APEX-MR
and what are the computational costs?

• (Q3) How well does APEX-MR on physical LEGO
assembly and can it safely execute planned trajectories
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despite uncertainties?
Q1 and Q2 will be examined closely in simulation, whereas

Q3 will be the focus of our real robot experiments.

A. Simulation Performance

We first conduct experiments in simulation. To our knowl-
edge, no existing simulator can reliably simulate the connec-
tions between LEGO bricks. Thus, all robot skills are reduced
to deterministic operations when evaluated in simulation, and
any variations are due to the stochasticity of planning in
APEX-MR.

Dataset We evaluate the performance of APEX-MR on a
suite of nine LEGO assembly tasks as shown in Fig. 6. The
complexity of these tasks varies significantly in terms of the
number of objects in the assembly plan, stability, orientation,
and manipulation skills required for physical assembly. The
Chair shown in Fig. 6(f) has 258 objects, but the structure is
solid and stable, and thus, no collaborative skills are needed.
On the other hand, many of the bricks along the span of
the Bridge (Fig. 6(d)) require a robot to support them when
assembling from the top, whereas building the Cliff (Fig. 6(a))

and Faucet (Fig. 6(c)) requires an object reorientation and
collaborative assembly from bottom.

Metrics We use the execution makespan and wait time as
our evaluation metrics for plan quality. Since our output is
a TPG, we first roll out the asynchronous trajectory from
the TPG, assuming no controller delay. The rollout trajectory
converts each pose node back to a configuration. Actions in
the skill nodes are executed based on the reference trajectory,
and force feedback is switched off in the simulation. The
timestamp for each configuration in the rollout trajectory is
the earliest possible time to reach this node based on incoming
type-2 edges. Execution makespan is the maximum time taken
among all robots to execute a trajectory, i.e., maxNi=1 t

i
Ni

end
.

Wait time is defined as the total amount of time any robot
spends waiting in the rollout asynchronous trajectory from
TPG, or the original sequential or synchronous trajectory.
In particular, we are interested in whether TPG processing
can successfully reduce wait time when initialized with a
sequential task and motion plan.

Baseline We also design a baseline for a synchronized
task and motion planning as a comparison to APEX-MR.
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Fig. 9: Example LEGO structures constructed in real by the
dual-arm system.

Although APEX-MR uses a sequential planner for simplic-
ity and efficiency, our TPG can also improve synchronized
motion plans which is a common approach in MR-TAMP.
Thus, we evaluate the performance improvement of TPG on
synchronized plan as well. In this synchronous planner, robots
can execute tasks in parallel but must wait for all robots to
finish their current task before proceeding to the next set of
tasks. We use an algorithm to convert the sequential task plan
from APEX-MR to a synchronous task plan. The main idea
is to execute the sequential task plan in parallel if executing
the next task does not violate inter-robot task dependencies
or block tasks scheduled at an earlier time. This process is
similar to building a TPG on tasks instead of motions for
parallelization. For every robot i and its task T i

m, the algorithm
checks if the intermediate goal pose Ci

Ni
end,m

collides with

any other intermediate goal pose of robot i′ and task T i′

m′

that satisfies m′ < m. If there exists a collision, then robot
i must wait for robot i′ to complete task T i′

m′ before starting
task T i

m. A synchronous task graph can then be generated by
combining these calculated dependencies, with existing inter-
robot dependencies. Then, composite RRT-Connect is used
as the multi-robot motion planner. Synchronous trajectories
for tasks executing in parallel are generated by planning all
degrees of freedom as a single robot.

Performance Fig. 7 shows the quality of the solu-
tion of APEX-MR on a variety of tasks. First, the TPG
post-processing and applying and shortcut, as described in
Sec. IV-C, significantly reduces makespan by 48% and wait
time by 85% on average, compared to the initial sequen-
tial motion plan at the horizontal dashed line. Compared to
the synchronized motion plan, our asynchronous plans from
APEX-MR are consistently shorter and have less wait time.
When applied to the synchronous plan, TPG also significantly
reduces the makespan by 36% and wait time by 77% on
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n=110
Pick
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n=10
Place Up

2.2 2.5 2.8 3.0 3.2
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7.0 7.5 8.0 8.5 9.0
Duration (seconds)

n=10
Support from Top

Fig. 10: Distribution of executing various FTS-feedback-
controlled LEGO manipulation policy on real robot. The
execution time is collected from assembling the Cliff structure
in Fig. 9(a) repeatedly. This variation adds to the uncertainty
in real-time execution.

average. Note that the post-processed sequential plan from
APEX-MR still slightly outperforms the post-processed syn-
chronized motion plan by 3% in terms of makespan. This is
due to the path produced by a multi-robot motion plan being
suboptimal compared to sequential motion planning. Still, the
wait time for the synchronized plan after TPG post-processing
is minimal.

Runtime Fig. 8 and Table I in the appendix shows the wall
clock time for APEX-MR. On average, the TPG construction
time is always lower than the task motion planning time except
for the Chair, which has a very long assembly sequence.
On the other hand, running a synchronized planner can be
much more expensive than the simple sequential planner used
in APEX-MR, which requires more careful coordination in
task planning, and multi-robot motion planning with more
degrees of freedom. By combining a simple sequential task
and motion planner with TPG post-processing, APEX-MR
produces higher-quality multi-robot plans with 26% lower
computational overhead on average than a synchronized multi-
robot task and motion planner alone.

B. System Deployment

We deploy the proposed APEX-MR to a real bimanual
setup for cooperative LEGO assembly. Fig. 5(b) illustrates
the environment setup of the dual-arm system. Note that
despite the environment being pre-calibrated, errors (∼ 1mm)
still exist since the calibration is imperfect and the structure
could be tilted due to the passive connection nature. Thus, we
integrate real-time force feedback using the FTS to improve
the manipulation robustness. For operation skills (i.e., pick,
place-down, place-up, handover), we use the force feedback to
detect successful insertion and update the manipulation policy
accordingly. For supporting skills (i.e., support-bottom and
support-top), we use force feedback to sense a slight touch
with the structure to avoid either over or under-supporting.
Fig. 9 showcases example LEGO structures accomplished by
the bimanual system with APEX-MR. The robots can safely
collaborate and efficiently build customized and complex



LEGO objects, including fragile overhanging structures.
Note that the key difference between assembling in real

and in simulation is with and without force feedback. Inte-
grating force feedback into the manipulation skills improves
the system robustness, but also brings uncertainty with re-
spect to execution time. In particular, we are interested in
whether the TPG execution framework ensures safe execution
and avoids collisions despite uncertainties from manipulation
skills. Fig. 10 depicts the distribution of execution times
of six manipulation skills, i.e., pick, place-down, place-up,
handover, support-bottom, and support-top (see Fig. 1 for
illustrations). All of these skills are designed to execute with
force feedback to ensure proper contact between the EOAT
and the object being manipulated and minimize the effect of
imperfect calibration or tilted structure. As a consequence of
these mm-level adjustments with force feedback, the execution
time can vary as much as 2 seconds, or as much as 23% from
the median. Nevertheless, our TPG execution framework can
reliably adjust the robot schedule if any delay could cause a
collision or require another robot to wait longer until a skill
is completed.

In practice, APEX-MR also allows the two robot arms to
operate in close proximity asynchronously thanks to the use of
TPG. For example, if one robot is stopped due to a controller
issue or because the user presses emergency stop, the other
robot would automatically stop if it is unsafe to continue its
execution. Although each robot’s feedback controller operates
independently, only those actions that are deemed safe are
passed to the robot’s action queue. Thus, APEX-MR can
significantly reduce the risk of unsafe action in real multi-
robot execution.

VI. LIMITATIONS AND FUTURE WORK

Although the proposed APEX-MR pipeline enables efficient
and safe execution for multiple robot arms, it still has several
algorithmic limitations which we discuss below.

Offline Computation Currently, both the TPG processing
and motion planning in APEX-MR are performed offline
before real execution. This can be a drawback in real assembly
tasks, where new tasks are continuously assigned once the
robots finish existing assembly on an assembly line. Another
limitation of offline computation is that the APEX-MR cannot
adapt to changes in the collision environment or assembly
steps easily. A principled framework to address these life-
long planning techniques is to use a windowed multi-robot
planner and only convert the first n part of the robot plan
to a TPG, similar to how Varambally et al. [59] address
automated warehousing. Taking a reduced-horizon approach
will significantly reduce planning time and allow plans to be
continuously updated concurrently with execution.

Planning for Robot Dynamics While APEX-MR are re-
liable and safe on real robots, APEX-MR requires a good
position or force controller for the robot because the generated
plan does not consider robot dynamics, such as acceleration
and jerk constraints. This is challenging because the planner
must generate continuous velocity and acceleration profiles

while also avoiding inter-robot collisions at all times. We plan
to incorporate dynamics as part of the TPG post-processing
step, such as solving a linear program on top of TPG-imposed
constraints and velocity constraints, as suggested in Hönig
et al. [20]. Another interesting problem with robot arms is the
speed constraints may be imposed on the task space, due to
the attached object at the end-effector or even closed kinematic
chains formed by concurrent manipulation [60].

Manipulation Policy While the proposed APEX-MR en-
ables efficient and safe dual-arm cooperative LEGO assem-
bly, the current system assembles each object based on pre-
defined skills. With the additional force feedback, each single
operation can be performed robustly. However, due to the
passive connection nature of LEGO structures, i.e., established
connections could be gradually loosened and the structure can
be tilted or even collapse due to subsequent operations, the
long-horizon assembly could still fail. Therefore, the dual-arm
system, at its current stage, is not robust enough to construct
large-scale LEGO structures that have multiple fragile over-
hanging geometries. To further improve the robustness from a
system perspective, we aim to investigate methods for failure
detection [4] and recovery, e.g., reinforce the connections that
are loosened due to later operations. Failure detection and
recovery can also be integrated as part of an online replanning
framework that dynamically reschedules the robot’s tasks if a
failure occurs and intervention becomes necessary.

Other Cooperative Assemblies Building on the APEX-
MR pipeline, we plan to extend its application to a broader
range of cooperative tasks, such as the NIST Box Assembly
[40], and other industrial assembly scenarios. By doing so,
we aim to address the unique challenges posed by real-world
manufacturing environments, gaining deeper insights into how
cooperative systems can be optimized for complex, large-
scale production tasks. While the discussion in this paper
is based on LEGO assembly, the components in APEX-MR,
especially TPG post-processing, can be applied to other multi-
robot assembly tasks. A concrete step would be to investigate
how to integrate manipulation policies that are more complex
than those used for LEGO assembly, e.g., diffusion policy [6],
to the TPG framework.

VII. CONCLUSION

For many robotic manipulation tasks, a team of cooperative
robot arms is often necessary and beneficial because coop-
eration can improve dexterity, flexibility, and versatility. A
reliable framework for coordinating robot arms should possess
several key qualities: efficiency to maximize throughput, scal-
ability to long-horizon and complex tasks, and safety during
real execution.

With these criteria in mind, we have proposed APEX-
MR, a pipeline for multi-robot asynchronous planning and
execution. Our proposed pipeline combines a sequential task
and motion planner with a TPG to post-process the plan
for asynchronous execution. Specifically, TPG post-processing
can significantly speed up the execution of otherwise sequen-
tial and synchronous multi-robot task plans by 48% and 36%



on our simulated assembly tasks. Because coordination is
easier, sequential motion planning is far more efficient than
planning for synchronous execution.

We demonstrated that our proposed algorithm can be suc-
cessfully deployed and integrated for a real bimanual co-
operative task. LEGO structures, as an example, presented
a challenging manipulation task due to the need for high
precision and the non-rigid nature of their connections. We
presented a set of manipulation skills for complex cooperative
assembly, including supported placement and object handover,
based on the end-effector design LT-V2. The dual-arm system
successfully performs customized LEGO assembly and is the
first robotic system to do so with commercial LEGO bricks.
Additionally, we showed that the integration with the TPG
execution framework is robust in the presence of uncertain
execution time. In the end, we hope that this framework can
advance and bring closer to more real use of multi-robot arm
collaboration algorithms.
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APPENDIX

A. Details of Task Planning Formulation

Each assembly step aj requires a specific lego type, and
each brick in environment has a specific type. Typically, there
are many bricks of the same type for in the environment.
Mathematically, we represent whether a brick bk is the correct
type for the assembly step aj using a binary variable δtj,k,
where δtj,k = 1 if bk is suitable and δtj,k = 0 otherwise. The
assembly sequence also specifies whether each step aj requires
multiple robots for cooperative assembly, denoted by another
binary variable δsj , where δsj = 1 if two robots are needed for
aj .

Let Xijkg and Yijg be the binary decision variables.
Xijkg=1 means that robot i is assigned to assembly step j,
using object bk and the gth grasp pose. Yijg = 1 means that
the ith robot is assigned to support the assembly step j, using
the gth support pose. Cijkg and Cs

ijg denote the estimated cost
for assigning Xijkg = 1 and Yijg = 1, respectively. P is the
maximum number of feasible grasp poses and is set based on
the objects and user preferences. Xijkg = 1 means the ith

robot and object bk is assigned for the assembly step j, using
the gth grasp pose. The cost Cijkg is computed as the sum of
joint space distance from robot i’s HOME pose to gth robot
pose for picking object bk to the robot target pose for placing
the object at assembly step aj . Similarly, Cs

ijg is the distance
from robot i’s HOME pose, to the gth support pose for step
aj . The solution to the following ILP program then forms a
complete sequential task plan.

argmin
X,Y

∑
ijkg

CijkgXijkg +
∑
ijg

Cs
ijgYijg + λ

∑
j

(ZM
j − Zm

j )

(1)
subect to task, robot, and object constraints

The first two terms of optimization minimize the total cost
of executing a sequential task plan. The last auxiliary cost term
penalizes cases where a single robot is assigned for multiple
consecutive tasks and prevents parallelization. The constraints
include

N∑
i=1

Nb∑
k=1

P∑
g=1

Xijkg = 1 ∀j ∈ [1, . . . , Na] (2)

N∑
i=1

P∑
g=1

Yijg = δsj ∀j (3)

Nb∑
k=1

P∑
g=1

Xijkg +

P∑
g=1

Yijg ≤ 1 ∀i ∈ [1, . . . , N ], ∀j (4)

N∑
i=1

Nb∑
k=1

P∑
g=1

Xijkgδ
t
jk = 1 ∀j (5)

N∑
i=1

Na∑
j=1

P∑
g=1

Xijkg ≤ 1 ∀k ∈ [1, . . . Nb] (6)

Eqn. 2 ensures that each task is assigned exactly one primary
robot. Equ. 3 assigns a second support robot for each assembly
step that needs one. Eqn. 4 prevents each robot from being
the primary robot and the support robot at the same step. Eqn.
5 matches an object of the correct type for each assembly
step. Eqn. 6 ensures that each object is used at most once.
Additionally, the following constraints apply to the auxiliary
variables ∀i ∈ [1, . . . , N ] and ∀j = [1, . . . , Na −N + 1]

zi,j =

j+N∑
j′=j

Nb∑
k=1

P∑
g=1

Xij′tg +

j+N∑
j′=j

P∑
g=1

Yij′g (7)

ZM
j ≥ zi,j , Zm

j ≤ zi,j (8)

zij denotes the number of tasks assigned to robot i from
the task window aj to aj+N−1, whereas ZM

j and Zm
j are the

maximum and minimum zij at each window for all robot i.

B. Details of Lego Manipulation Policy

C. Numerical Results

Table I shows the wall clock time for planning, TPG
construction, and shortcutting across environments averaged
over 4 random seeds.



TABLE I: Wall clock time for planning, TPG construction, and shortcutting across environments (mean ± std)

Version Cliff Branched Stairs Faucet Bridge Fish Chair Vessel Guitar RSS
# Objects 11 14 14 38 29 258 36 24 47

Task
Planning

APEX-MR 0.6 ± 0.0 1.1 ± 0.0 1.1 ± 0.0 9.7 ± 0.5 6.5 ± 0.2 13.0 ± 0.2 4.9 ± 0.6 2.3 ± 0.1 14.5 ± 0.5
Sync 1.5 ± 0.0 1.9 ± 0.0 2.3 ± 0.0 10.8 ± 0.5 8.8 ± 0.2 27.1 ± 0.3 6.7 ± 0.5 3.9 ± 0.0 18.1 ± 0.5

Motion
Planning

APEX-MR 11.9 ± 0.3 14.7 ± 0.3 14.3 ± 0.2 52.9 ± 0.8 37.8 ± 0.6 220.3 ± 3.5 30.5 ± 0.7 20.2 ± 0.1 72.5 ± 4.6
Sync 26.7 ± 0.5 36.4 ± 1.2 37.2 ± 0.5 124.8 ± 2.8 96.7 ± 1.0 501.9 ± 5.7 77.4 ± 0.8 46.8 ± 0.3 180.9 ± 7.6

TPG
Construction

APEX-MR 9.1 ± 0.0 9.6 ± 0.1 10.3 ± 0.1 35.7 ± 0.6 29.2 ± 0.1 341.9 ± 1.4 16.2 ± 0.8 16.7 ± 0.1 52.2 ± 0.4
Sync 9.4 ± 0.2 9.7 ± 0.0 10.7 ± 0.3 30.0 ± 0.6 27.0 ± 0.2 345.5 ± 4.3 16.8 ± 0.2 16.8 ± 0.0 53.8 ± 1.0

Total
Planning

APEX-MR 21.6 ± 0.4 25.3 ± 0.4 25.7 ± 0.2 98.2 ± 1.8 73.5 ± 0.9 575.2 ± 5.1 51.6 ± 2.1 9.2 ± 0.2 139.3 ± 5.5
Sync 37.5 ± 0.8 48.0 ± 1.2 50.1 ± 0.8 165.6 ± 3.8 132.5 ± 1.4 874.6 ± 10.3 100.9 ± 1.5 67.5 ± 0.3 252.8 ± 9.1

TPG Shortcut 20 20 20 20 20 60 60 60 60


	Introduction
	Related Works
	Preliminaries
	APEX-MR: Asynchronous Planning and Execution for Multi-Robot System
	Task Planning
	Motion Planning
	Asynchronous Execution 
	TPG Execution

	Results
	Simulation Performance
	System Deployment

	Limitations and Future Work
	Conclusion
	Appendix
	Details of Task Planning Formulation
	Details of Lego Manipulation Policy
	Numerical Results


