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Abstract—This paper presents the Safe Protective and Assistive
Robot Kit (SPARK), a comprehensive toolbox designed to ensure
safety in humanoid autonomy and teleoperation. Humanoid
robots have gained significant popularity due to their versatility
in interacting with complex environments. It is critical to ensure
that no harm is caused during those interactions since unsafe
behaviors can pose serious risks to the environment and human
safety, considering humanoids’ physical capabilities. Therefore,
robust safety measures are essential in general humanoid robotics
research and deployment. The inherently complex physical
structures of humanoid robots further complicate the design
of task-specific safety solutions. To alleviate this challenge, we
introduce SPARK, a modular toolbox that integrates state-of-
the-art safe control algorithms into a generic robot control
framework. SPARK enables users to configure safety behaviors
across multiple dimensions, such as defining safety criteria
and sensitivity levels, allowing for optimized trade-offs between
safety and performance. The toolbox is natively compatible with
the Unitree G1 humanoid robot, utilizing Apple Vision Pro
(AVP) for perception, while also offering interfaces for seamless
customization with alternative hardware setups. By integrating
SPARK as a fail-safe mechanism, users can significantly improve
the safety of their existing humanoid systems.

I. INTRODUCTION

Humanoid robots, with their human-like form and capa-
bilities, hold the promise of seamless integration into en-
vironments designed for humans, performing tasks ranging
from industrial automation to personal assistance. To deploy
those robots into daily life, ensuring their safe operation, in
the sense of guaranteeing humanoids to interact with their
environments and humans without causing harm, is critical.
This necessitates provable safety - mathematical assurances of
safe behavior - that allow humanoids to adjust in real-time
to dynamic scenarios. Ensuring safe operation for humanoid
robots is particularly challenging because they possess both
mobility and complex limb articulation, leading to a high-
dimensional control problem. Managing safety at the limb
level is essential to prevent the implementation of overly
conservative constraints that could limit the robot’s capabil-
ities. The dynamic and unpredictable nature of real-world
environments necessitates a flexible approach to safety.

To this end, we introduce SPARK (Safe Protective
and Assistive Robot Kit), a Python toolbox designed
to provide robust safety guarantees for humanoid robots during
autonomy and teleoperation. SPARK implements a suite of
safe controllers and planners, centered around the Safe Set
Algorithm (SSA) [3]. SSA modifies potentially unsafe control
inputs to ensure compliance with safety constraints without

(a) Framework of SPARK system.

(b) Safe teleoperation with SPARK.

Figure 1: SPARK system framework and example usage of SPARK in a
teleoperation task. In (b), the teleoperated humanoid robot tries to approach
the Coke cans but gets interrupted by the human who aims at the same targets.
Sensing potential collision, SPARK overrides the teleoperation command
(blue) and generates safe actions (green). Teleoperation commands pass to
the robot when no safety risks are present (left and right most frames).

hindering performance. As a toolbox, SPARK offers versatility
in hardware compatibility and allows users to configure tasks
and safety constraints with Python APIs. This adaptability
allows users to quickly integrate SPARK with their existing
pipelines to safeguard the development process. For example,
developers can incorporate SPARK into their stacks to ensure
safety guarantees during autonomous operations. In teleopera-
tion tasks, SPARK overrides inappropriate operator commands,
preventing collisions with obstacles or humans even in highly
dynamic scenarios. SPARK also allows deeper customizations
if the default configurations do not suffice their need. For
example, researchers can pass their custom system models and
controllers to SPARK and deploy experimental code directly
on hardware with the confidence that any unsafe actions will
be filtered out.



SPARK is implemented for Unitree’s G1 humanoid platform
and Apple Vision Pro (AVP) for perception and can be quickly
customized for alternative humanoid and perception systems.
Key features of SPARK include:

• Safety constraint satisfaction: safe controller for satis-
fying user-defined safety criteria.

• Optimized safety-performance trade-off: configurable
trade-off between task-specific goals and safety.

• Modularized design: convenient plug-and-play without
the need to alter existing pipelines.

• Compatibility: generic framework compatible with the
general class of humanoid robots and perception systems.

• Accessible Python API: support for both out-of-box
deployment and deep customizations.

II. SAFE HUMANOID AUTONOMY AND TELEOPERATION

In this section, we describe the safe humanoid autonomy
and teleoperation framework, and formulate the core safe
control problem to be solved by SPARK.

A. Safe Humanoid Autonomy and Teleoperation Framework

As shown in Figure 1a, the hardware of the proposed
framework primarily consists of three components: a human
user, a humanoid robot, and perception devices. The human
user interacts with the robot, either serving as the teleoperator
or being modeled as environmental obstacles. The humanoid
robot executes teleoperation commands while avoiding col-
lisions with obstacles in its environment. Various perception
methods can be employed, including the Apple Vision Pro,
RGB cameras, and Motion Capture Systems, all of which can
be integrated into the perception module.

The software framework for safe humanoid autonomy and
teleoperation is divided into two main modules:

1) Perception Module: The Perception Module processes
the state of the hardware system and converts it into obser-
vations required by the controller. By analyzing the relative
position of the human user within the robot’s reference frame,
it forwards the teleoperation target position to the controller.
Additionally, it detects and relays the positions of obstacles in
the environment for collision avoidance.

2) Controller Module: The Controller Module is the core
of the SPARK system. It receives teleoperation targets from the
Perception Module and uses a nominal controller to compute
reference controls for the robot joints via inverse kinematics.
The safe controller then refines these reference controls, inte-
grating information about environmental obstacles to generate
safe control commands for the robot.

B. Safe Control Problem

The safe controller of SPARK is aiming at achieving both
efficient and safe interation with the environment by solving
the following safe control problem:

min
u

∥u− uref∥2Qu
(1)

s.t. ẋ = f(x,u)

x ∈ Xs

Where x ∈ X ⊆ RNx represents the system state, and
u ∈ U ⊆ RNu is the control variable corresponding to
the Nu degrees of freedom. f(x,u) denotes the system
dynamics, and Xs is the set of safe system states. At each
timestep, the objective of the control problem is to track the
reference control uref while satisfying both the system dynamic
constraints and the safety constraints.

The challenges of safe control for humanoid robots primar-
ily arise from two aspects:

1) Complex Dynamics: A humanoid robot combines the
features of both a mobile robot and a dual-arm manipulator
system, resulting in a high-dimensional and nonlinear dynamic
system. The coupling between the inherent uncertainty of
legged robot locomotion and the high dimensionality of the
dual-arm manipulator further increases the complexity of the
robot’s dynamics. Additionally, the system’s complexity is
amplified by the partial dependencies among the degrees of
freedom (DOFs). For example, the DOFs of one arm do not
directly affect the state of the other arm. However, DOFs that
influence the robot’s localization directly impact the position
of the floating base, which is shared by both arms. These
interdependencies make it particularly challenging for the
robot to precisely track specific targets and perform safe
motions in Cartesian space.

2) Dexterous Safety: Beyond the dynamic constraints,
safety constraints add another layer of complexity to the
safe control problem. A humanoid robot must simultaneously
satisfy multiple safety constraints to safely operate in the real
world without being conservative. For instance, humanoids
may operate in confined spaces where different body parts
interact closely with various environment objects, requiring
precise pose adjustments to avoid collisions with obstacles.
Hence, humanoids must be modeled at a granular limb level
rather than a coarse whole-body level, and all limb-obstacle
combinations must be considered simultaneously. In addition,
humanoids must avoid self-collision, requiring a group of
constraints that scales combinatorially with respect to the
granularity of modeling. Those diverse constraints combined
render the safe state space Xs highly non-convex, making it
hard to ensure safety in real-time.

As a core contribution, SPARK implements generic safe
controllers compatible with various hardware systems to accel-
erate the safe deployment of humanoids in real life. In the next
section, we describe the safety backbone of SPARK, which
algorithmically addresses humanoid safe control.

III. SAFE CONTROL VIA SAFE SET ALGORITHM

In this section, we first review Safe Set Algorithm (SSA) [3],
the safety backbone of SPARK. Then, we explain how SSA
is leveraged to address optimal control problems with multi-
ple safety constraints, which naturally arise when deploying
humanoids in the real world.

A. Safe Control Objectives

SSA assumes that the user-specified set of safe system states
XS is the zero sublevel set of some piecewise smooth energy
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Figure 2: Limb-level collision avoidance with static humanoid reference pose.

function ϕ0 := X 7→ R. Namely, XS := {x ∈ X | ϕ0(x) ≤
0}. Users can define XS and ϕ0 to fit specific scenarios. For
instance, to keep a minimal distance dmin from some obstacle,
ϕ0 can be ϕ0 = dmin−d where d is the distance to the obstacle.
SSA provably ensures safety by establishing a subset Xsafe of
XS such that x never leaves Xsafe as long as x has been in
that set. Xsafe is also referred to as the safe set. Formally,
if x(t0) ∈ Xsafe, then x(t) ∈ Xsafe for t ≥ t0. We refer
to such property as forward invariance (FI). Secondly, if the
state x starts outside Xsafe, it should enter Xsafe in finite
time. Formally, for any t0 such that x(t0) /∈ Xsafe, there exists
t ∈ [t0,∞) such that x(t) ∈ Xsafe. We refer to such a property
as finite-time convergence (FTC).

B. Safe Set Algorithm

To keep x within the safe set, SSA enforces a Lyapunov-
like condition on the energy function ϕ0 and constraints its
rate of change. In cases of high relative degree, u may not
appear in ϕ̇0, preventing one from directly controlling ϕ0. For
example, ϕ̇0 = −ḋ depends only on velocities and cannot be
affected by the acceleration input of a second-order system.
Hence, we need an alternative energy function ϕ tailored to
the system dynamics. For instance, for an acceleration-driven
system (e.g., second-order), we can employ a velocity-based
energy function ϕ (e.g., first-order), such that ϕ̇ depends on the
input and can be used to construct safety constraints on u. The
safe set algorithm (SSA) [3] introduces a systematic approach
to the design of such ϕ, which is adopted by SPARK. SSA
introduces a continuous, piecewise smooth energy function
ϕ := X 7→ R, or safety index, to quantify safety while
considering the system dynamics. An nth (n ≥ 0) order safety
index ϕn has the following general form:

ϕn = (1 + a1s)(1 + a2s) . . . (1 + ans)ϕ0, (2)

where s is the differentiation operator. (2) can also be ex-
panded as

ϕn := ϕ0 +
∑n

i=1 kiϕ
(i)
0 . (3)

where ϕ
(i)
0 is the ith time derivative of ϕ0. ϕn should satisfy

that (a) the characteristic equation
∏n

i=1(1 + ais) = 0 only
have negative real roots to prevent overshooting of ϕ0 and
(b) ϕ

(n)
0 has relative degree one to the control input u. For

instance, if XS is defined by ϕ0 = dmin − d, we can use
ϕ1 = dmin−d−kḋ for collision-avoidance for an acceleration-
driven system. It can be shown that if ϕ̇n(x,u) ≤ −η when
ϕn(x) ≥ 0 for some constant η > 0, both forward invariance
within a safe set Xsafe and finite-time convergence to that set
are guaranteed [1]. Hence, the safe control law cϕn

of SSA
can be written as the following optimization:

min
u∈U

J (u) s.t. ϕ̇n(x,u) ≤ −η if ϕn(x) ≥ 0 (4)

where the objective J is arbitrary. For instance, one can assign
J (u) = ∥u∥ if minimal effort is desired when safety is the
sole objective.

SSA has been applied to various robot arm platforms [5, 8]
for safe human-robot interaction. The advantage of SSA over
other safe control methods (e.g., control barrier functions)
in interactive environments are discussed in [11]. The safety
index can be synthesized or adapted using rule-based ap-
proaches [13], evoluntionary optimization [12], adversarial
optimization [7], reinforcement learning [9], or sum-of-squares
programing [1, 2, 14]. There are various extensions of SSA
to handle uncertainties of human behaviors [4] and efficiently
learning human models during interactions [10], which can
be modules directly added to our toolbox. A comprehensive
discussion for achieving safety and efficiency during human-
robot interactions can be found in the book [6].
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Figure 3: Limb-level collision avoidance with dynamic humanoid reference poses.

C. SSA for Humanoids

As mentioned in section II-B, humanoid safety poses op-
timal control problems with multiple safety constraints due
to limb-level modeling of the robot. To handle that problem,
SPARK extends (4) to multi-constraint cases by allowing the
set of safe system states XS to be described by M ≥ 1 energy
functions ϕ0. Formally, we write XS := {x ∈ X | ϕ0[i](x) ≤
0, ∀i ∈ [M ]}. Taking system dynamics into account, we can
similarly acquire M safety indices {ϕn[i]}i∈[M ]. Based on
those, SPARK places one safe control constraint in the form of
(4) for each i ∈ [M ]. Replacing the original safety constraint
x ∈ XS in (1), we write the generalized safe control problem
solved by SPARK as

min
u

∥u− uref∥2Qu
(5)

s.t. ẋ = f(x,u)

∀i ∈ [M ], ϕ̇n[i](x,u) ≤ −η if ϕn[i](x) ≥ 0

It can be shown that under the control constraints in (5), a
safe set Xsafe ⊆ XS can still be found in which both FI
and FTC properties are satisfied to provide theoretical safety
guarantees. The detailed proof is omitted here due to the scope
of this paper but can be easily derived following [1].

IV. EXPERIMENTS AND CASE STUDIES

In this section, we present several examples of SPARK de-
ployment on a physical humanoid robot. The configuration of
both the nominal control objectives and the safety constraints
are described for each example.

A. Experimental Setup

For our experiments, we utilized a Unitree G1 humanoid
robot, which features a total of 29 degrees of freedom (DOFs).
The perception module employed an Apple Vision Pro to
capture the human user’s gestures and determine the position

of the humanoid robot. The robot’s dynamic system was
modeled as a mobile dual-manipulator system.

For the locomotion task, three DOFs were considered: x
velocity, y velocity, and yaw angular velocity, which describes
the rotational velocity around the z axis. Regarding the upper-
body dynamics, each arm was treated as a general manipulator
with seven DOFs, while the waist was equipped with three
rotational joints. This results in a total of 20 DOFs for the
system used in our experiment.

To evaluate the safety and performance of SPARK, we
designed three distinct test cases. In each case, the humanoid
robot was tasked with avoiding collisions with dynamic ob-
stacles while tracking various nominal targets with its hands.
Here the human user is treated as the obstacle which needs
to be avoided by the robot. In order to model the collision
volumes, we wrap each joint of the robot arms and the human
user’s hands with a sphere. The following sections provide a
detailed description of each test case and an analysis of the
robot’s performance.

B. Limb-level Collision Avoidance

To evaluate the safety performance of SPARK for limb-level
motion, we begin with the simplest task, in which the robot
remains in a fixed position while avoiding potential collisions
with the human user. The nominal control is defined as:

ur
ref = Kp(x

R
target − xR), (6)

where xR represents the current joint state of the robot, and
xR
target is the constant target position for each degree of

freedom. The proportional gain Kp is used to track the target
position via the nominal control ur

ref .
The safety index for this task is defined as:

ϕn[i](x
R) = dmin[i]−D[i](xR,xH) (7)

where ϕn[i] is the safety index for the ith collision volume
pair between the human and the robot. dmin[i] is the minimum
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Figure 4: Limb-level collision avoidance with teleoperation commands.

required distance to be maintained between the ith collision
volume pair. The function D[i](xR,xH) calculates the mini-
mum distance between the ith collision volume pair given the
state of the robot, xR, and the human user, xH .

If the minimum distance between the ith collision volume
pair becomes smaller than dmin[i], the safety index ϕn[i](x

R)
will turn positive, activating the safe controller to prevent
collisions.

As shown in Figure 2, when the user attempts to approach
the robot arm from various angles, the robot reacts by moving
away from the human’s hand if the minimum distance between
them becomes smaller than dmin. Once the robot detects that
the human hand has moved away and the surrounding envi-
ronment is safe, it resumes following the nominal controller’s
commands and returns to the target position.

To evaluate the performance of the SPARK safe controller
in tracking a dynamic target position, we designed a dynamic
limb-level collision avoidance test case. Unlike the static test,
where the nominal controller tracks a fixed target, the nominal
controller in this test is tasked with following a dynamic
target xR

target. Specifically, we defined a circular trajectory for
the right hand of the humanoid robot as the dynamic target
trajectory. In this scenario, the robot must track the target
trajectory while simultaneously avoiding collisions with the
human user with the same safety index ϕ as defined before.

From Figure 3, we can observe that when the human
hand remains outside the dmin region, the robot follows
the reference trajectory and moves along the circular path.
However, if the human hand approaches too closely to the
robot’s hands, the humanoid robot utilizes both its waist and
arm degrees of freedom (DOFs) to avoid potential collisions,
regardless of changes in the target position. Once the human
hand moves away, the robot returns to the reference trajectory
while remaining prepared for future collision avoidance.

C. Safe Teleoperation

To evaluate the capability of the safe controller in more
general scenarios, we removed the predefined dynamic target
and tasked the robot with following another human user’s tele-
operation commands while maintaining collision avoidance.
This setup introduces the concept of “Safe Teleoperation.” In
this test, the target of the humanoid nominal controller, xR

target,
is not predesigned but instead generated in real-time by a
human teleoperator. This significantly increases the challenge
for the robot to generate safe motions in an unpredictable and
dynamic environment.

In our experiment, we created a realistic scenario where the
robot attempts to retrieve objects from a table. During the task,
if the human user reaches for the same object as the robot,
the safe controller is triggered. The robot prioritizes collision
avoidance over executing the teleoperation commands, ensur-
ing safe interaction and protecting both the humanoid robot
and the human from potential hazards caused by the limited
perception of a remote teleoperator.

V. DISCUSSION AND CONCLUSION

In this paper, we introduce SPARK, a toolbox for safeguard-
ing the development of humanoid autonomy and teleoperation.
We introduce the safe humanoid control framework as well
as the core safe control algorithms SPARK was built upon.
SPARK provides adjustable trade-offs between safety and
performance, fitting various user requirements. With a modular
design and accessible APIs, SPARK provides compatibility
with a wide range of tasks with different hardware systems
and levels of customizations. With SPARK, humanoid research
and deployment can be significantly accelerated with enhanced
hardware and environment safety. In future work, we plan to
keep monitoring the development of humanoid hardware and
research and updating SPARK with support for emerging safe
control strategies and hardware systems.
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